Содержание
Огнестойкость металла и железобетона
Для количественной оценки устойчивости эксплуатируемых зданий и сооружений к воздействию открытого огня вводится понятие предела их огнестойкости. Оно определяется как время, за которое строительная конструкция теряет свои несущие, теплоизолирующие и прочностные свойства.
Стальной прокат, из которого изготавливаются металлоконструкции, не относится к категории легко сгораемых материалов, но, тем не менее, при термическом нагреве он теряет свои свойства. Указанные изменения приводят к деформации элементов строений, а также к снижению прочностных показателей и разрушению металлического сооружения.
Критические для металла температуры
Под потерей огнестойкости понимается критическое состояние объекта, предшествующее его полному разрушению. По параметру возгораемости все входящие в состав строительных конструкций материалы условно делятся на несгораемые, трудносгораемые и легкосгораемые.
Отличительной особенностью металлоконструкций является быстрая потеря ими своих противопожарных свойств в условиях сильного разогрева, характерного для классической пожарной ситуации.
В связи с этим предел огнестойкости металлических конструкций редко превышает значение 10-20 минут, а конкретная его величина зависит от целого ряда факторов.
В первую очередь она определяется интенсивностью разогрева материала, из которого сделано сооружение. В случае разового или кратковременного воздействия открытого огня, сопровождающегося скачкообразным изменением температуры, металл нагревается не так быстро (в сравнении с окружающим пространством).
При постоянном и медленном нарастании энергии нагрева в очаге пожара металл сопротивляется ему только в течение короткого времени.
По истечении этого временного промежутка его температура выравнивается с окружением.
Далее, на рассматриваемый показатель существенное влияние оказывают характеристические размеры отдельных элементов конструкций, а именно приведённая толщина металлов, предел огнестойкости которых подлежит оценке и размеры площади нагрева.
С увеличением характеристических размеров металлоконструкций и уменьшением площади их непосредственного контакта с огнём, скорость повышения температуры снижается.
Ещё одним фактором, определяющим поведение изготавливаемых из металла сооружений и позволяющим поднять порог их огнестойкости, является наличие специальных защитных средств.
Из сказанного следует, что температура нагрева металлических конструкций при пожаре может принимать произвольные значения. А для оценки состояния сооружения необходим какой-то фиксированный параметр, определяющий снижение прочностных свойств металла с его накаливанием.
Для этого и вводится специальный температурный показатель (коэффициент), по достижении которого граница прочности металла в нагретом состоянии уменьшается до предельно низкой величины. Приведшее же к этой ситуации значение температуры называется критическим.
Причины разрушения (снижения прочности)
Основная причина снижения прочности металлоконструкций при пожаре – длительное воздействие критических температур. В результате этого разрушаются нормальные связи между элементами всей конструкции с одновременным ослаблением межмолекулярных металлических связей (вследствие плавления).
Среди факторов, способствующих разрушению стальных конструкций, особо выделяются:
- высокая теплопроводность, объясняемая образованием во время пожара так называемого «электронного газа»;
- обезуглероживание поверхностного слоя металлических заготовок, способствующее возникновению в нём нагрузок растягивающего типа;
- большой перепад температур по сечениям каркасных оснований и перекрытий из металла, приводящий к появлению критических напряжений.
При подготовке решений по защите конструкций от термических воздействий во время пожара все эти факторы должны учитываться в единой связке.
Нормативные требования
Степени и предельные значения показателей огнестойкости металлических сооружений регламентируются действующими нормативными актами (Федеральным законом, в частности).
На основании этого документа все известные виды металлоконструкций по предельным состояниям входящих в их состав элементов и способности противостоять распространению пожара классифицируются по следующим признакам:
- «R» – потеря балками, фермами, рамами или колоннами их начальной несущей способности.
- «E» – нарушение целостности металлической конструкций (чаще всего используется для оценки состояния наружных стен).
- «I» – снижение теплоизолирующих свойств до предельных значений.
Для ряда специфичных элементов вводятся смешанные признаки ухудшения состояния (REI120 или RE30, например). Добавим также, что все эти величины измеряются в часах или минутах.
Более подробно ознакомиться с величинами этих показателей для различных конструктивных элементов можно в таблицах.
Таблица 1. Степени огнестойкости зданий, строений и пожарных отсеков
Степень огнес-тойкости зданий, сооружений, строений и пожарных отсеков | Несущие стены, колонны и другие несущие элементы | Наружные ненесущие стены | Перекрытия междуэтажные (в том числе чердачные и над подвалами) | Строительные конструкции бесчердачных покрытий | Строительные конструкции лестничных клеток | ||
настилы (в том числе с утеплителем) | фермы, балки, прогоны | внутренние стены | марши и площадки лестниц | ||||
I | R 120 | Е 30 | REI 60 | RE 30 | R 30 | REI 120 | R 60 |
II | R 90 | Е 15 | REI 45 | RE 15 | R 15 | REI 90 | R 60 |
III | R 45 | Е 15 | REI 45 | RE 15 | R 15 | REI 60 | R 45 |
IV | R 15 | Е 15 | REI 15 | RE 15 | R 15 | REI 45 | R 15 |
V | не нормируется | не нормируется | не нормируется | не нормируется | не нормируется | не нормируется | не нормируется |
Таблица 2. Значение критической температуры различных металлических конструкций
Материал конструкции | Tcr, град.С |
Сталь углеродистая Ст3, Ст5 | 470 |
Низколегированная сталь марки:25Г2С30ХГ2С | 550500 |
Алюминевые сплавы марки:АМг-6,АВ-Т1Д1Т,Д16ТВ92Т | 225250165 |
Все эти характеристики для большинства незащищённых металлических элементов имеют сравнительно малое значение, укладывающееся в диапазон R10-R15 (R6-R8 – для алюминия).
Причины этого – в структурных особенностях стальных деталей, связанных с их теплопроводностью и характером распределения температур по продольным сечениям.
В качестве исключения могут рассматриваться массивные колоны со сплошным сечением, предел огнестойкости которых нередко достигает значения R45.
Превышение заданного в ней показателя (одного или сразу нескольких) однозначно свидетельствует о том, что металлоконструкцией или её элементом достигнут расчётный предел по огнестойкости.
Железобетонные конструкции
К основным показателям, оказывающим существенное влияние на характеристики огнестойкости железобетонных конструкций, следует отнести марку бетона, а также тип входящего в его состав вяжущего и наполнителя.
Помимо этого предел огнестойкости зависит от состава и класса используемой арматуры, геометрических особенностей конструкции (включая конфигурацию и размеры опорных элементов).
Следует добавить такие важные для этого материала факторы, как условия, при которых осуществляется нагрев, а также показатель нагрузки на отдельные элементы и влажность бетонных структур.
В условиях распространения открытого огня в бетонных структурах определяющее влияние на показатель их огнестойкости оказывают снижение прочностных характеристик бетона по мере его нагрева, тепловое расширение входящей в конструкции арматуры.
Прочность теряется за счет появления в арматуре сквозных отверстий и небольших трещин, к тому же теряются теплоизолирующие свойства.
Самыми уязвимыми при распространении пожара оказываются способные к изгибу элементы конструкций (ригеля, балки, прогоны и плиты перекрытий). Ознакомимся с их характеристиками более подробно.
Плиты, колонны, стены
Пределы огнестойкости отдельных элементов железобетона, подверженных сильным деформационным изгибам, при проведении типовых испытаний обычно укладываются в диапазон значений R45-R90.
Сравнительно небольшие усреднённые значения для этих элементов объясняются тем, что арматура, вносящая основной вклад в прочностные характеристики конструкции, защищена в них тонким слоем бетонного покрытия.
Для участков растянутого арматурного усиления это равнозначно отсутствию какой-либо преграды для свободного распространения огня. Следствием указанной особенности железобетонных структур является высокая скорость их разогрева до критических для данного типа конструкций температур.
С данными по рабочим значениям пределов огнестойкости железобетонных сооружений (а также входящих в них и подверженных деформации гибких элементов) можно ознакомиться в таблицах.
При оценке огнестойкости элементов металлоконструкций (лестниц, например) основное внимание обращается на их поведение в критических условиях.
Окончательной целью проводимых испытаний является выработка рекомендаций, позволяющих повысить пределы огнестойкости за счёт принятия специальных технических и организационных решений.
Загрузка…
Источник: https://ProtivPozhara.com/zaschita/teorija-stojkosti/ognestojkost-metalla-i-zhelezobetona
Огнестойкость строительных конструкций и методы ее повышения
Одним из важнейших параметров пожаробезопасности зданий, сооружений и инженерных коммуникаций является предел их огнестойкости. Данный показатель выражается периодом времени, в течение которого конструкция приобретает признаки нормируемых предельных состояний в условиях пожара, а именно:
- потеря несущей способности (обозначается R, указывается в минутах);
- нарушение целостности (Е, мин.);
- потеря теплоизоляционных характеристик (I, мин.)
Огнестойкость различных конструкций
Пределы огнестойкости R, E, I для различных видов конструкций регламентируются [1], [2] и могут находиться в пределах от 15 до 150 минут.
В том числе, несущие элементы должны обладать степенью огнестойкости от R15 до R120, наружные ограждающие конструкции RE15-RE30, перекрытия REI15-REI60, внутренние перегородки REI45-REI120, лестничные площадки и марши R30-R60.
Для сооружений повышенной ответственности могут требоваться более высокие пределы огнестойкости, например, для подземных сооружений эти показатели могут превышать 180 минут.
Огнестойкость различных материалов
Основными материалами, из которых изготавливаются строительные конструкции являются сталь, бетон (железобетон) и древесина. Каждый из этих материалов в незащищенном виде имеет свои пределы огнестойкости.
Металлоконструкции в незащищенном виде характеризуются наименьшими показателями огнестойкости. Этот показатель зависит от показателя приведенной толщины металла: при толщине 5 мм предел огнестойкости составляет 9 минут, при толщине 15 мм — 18 минут.
Нормативная документация [1] [2] допускает использование конструкций из незащищенного металла в случаях, когда требования к ним по пределу огнестойкости R, E, I не превышают 15 минут.
В иных случаях для повышения предела огнестойкости металла должна выполняться огнезащитная обработка.
Деревянные конструкции, используемые в современном строительстве, как правило, имеют заводские пропитки, снижающие их горючие свойства.
Однако, пределы их огнестойкости, определяемые с учетом скорости обугливания в условиях пожара, характеризуются низкими показателями.
Современные конструкции из клееной древесины имеют предел огнестойкости 30-45 минут.
Бетонные (железобетонные) конструкции имеют высокий предел огнестойкости, показатель которого зависит от толщины защитного слоя бетона и конструктивных особенностей элементов.
Как правило, дополнительной огнезащиты требуют пустотные и ребристые плиты, тонкослойные панели, элементы, армированные внешним способом, а также конструкции, выполненные из полимербетона.
Эти материалы по-разному ведут себя в условиях пожара. Например, в древесине протекают процессы термического разложения, в результате которого образуется пористый кокс.
При этом снижается жесткость и прочность конструкции. Металл под воздействием высоких температур переходит в пластичное состояние. Бетон снижает свои характеристики в процессе дегидратации.
Влажный бетон в условиях пожара подвергается взрывообразному разрушению.
Методы повышения предела огнестойкости
Для повышения предела огнестойкости конструкций и доведения его до заданных параметров в строительстве используются различные огнезащитные материалы.
Они позволяют блокировать поверхность защищаемой конструкции от высокотемпературного воздействия огня и сохранять ее в рабочем состоянии в течение требуемого периода времени.
Огнезащитные покрытия используются для обработки:
- строительных конструкций, предел огнестойкости которых регламентируется нормативной документацией, в том числе — колонн, рам, ферм, балок, плит покрытия, междуэтажных перекрытий;
- воздуховодов и газоходов, к которым предъявляются соответствующие требования;
- кабельных разводок, проходок через ограждающие конструкции огнестойкого типа;
- емкостей для хранения нефтепродуктов, легковоспламеняющихся и горючих жидкостей.
Увеличение предела огнестойкости различных конструкций может выполняться конструктивными методами или окраской. В том числе, используются:
- штукатурка, отделка бетоном или кирпичом. Данный метод подходит для конструкций, допускающих дополнительное нагружение;
- облицовка специальными плитами, монтаж защитных экранов;
- нанесение огнезащитных составов поверхностного типа;
- пропитка конструкций из древесины;
- комбинация нескольких методов.
Основные виды огнезащитных материалов
В состав огнезащитных систем могут входить: заполнители, стойкие к высоким температурам (вермикулит, керамзит, базальт и другие), неорганические вяжущие (гипс, цемент и т.д.
), некоторые полимерные вяжущие и добавки, повышающие общую сопротивляемость системы воздействию огня, увеличивающие ее срок службы, прочность и другие технические характеристики.
Данные материалы могут использоваться по отдельности (например, гипс, базальтовые волокна) или в комбинации друг с другом.
Действие покрытий вспучивающегося типа на базе органических вяжущих основано на образовании слоя пенококса. Под воздействием огня покрытие постепенно выгорает, продлевая работоспособность конструкции.
Покрытия на основе минеральных связующих позволяют блокировать тепловой поток за счет выделения массы пара из содержащейся в их составе связанной воды.
Данный процесс замедляет повышение температуры защищаемой конструкции.
Огнезащитные составы вспучивающегося типа на минеральном вяжущем одновременно выделяют при нагреве пар и увеличивают свою толщину, что позволяет противостоять воздействию огня более эффективно.
Пористые и волокнистые огнезащитные материалы, обладающие низкой теплопроводностью, монтируются конструкционным методом и способны поглощать теплоту, не изменяя своей исходной формы.
Огнезащитные материалы композиционного типа представляют собой конструкционные элементы, обладающие, при этом, эффектом терморасширения, что позволяет достичь максимального эффекта повышения огнестойкости.
Популярные огнезащитные материалы и составы, представленные на Российском рынке
В соответствии с требованиями нормативной документации (НПБ 236-97, НПБ 251-98 и другие) вся огнезащитная продукция, применяемая в строительстве, должна пройти испытания и иметь соответствующие сертификаты.
Сегодня на рынке РФ представлено множество отечественных и зарубежных материалов и составов, повышающих пределы огнестойкости стальных, деревянных и железобетонных конструкций.
Наиболее популярными являются следующие представители.
- компания Promat, предлагающая огнезащиту различных типов для несущих металлических и деревянных конструкций, железобетона, кабельных каналов, воздуховодов, газоходов;
- компания КРОЗ — производитель комплексных систем огнезащиты всех типов строительных конструкций и инженерных коммуникаций на базе окрасочных составов и конструкционных решений;
- Огнеза — популярный отечественный производитель огнезащитных красок, лаков, пропиток, герметиков и конструкционных элементов на основе базальта. Компания выпускает материалы для защиты металла, дерева и воздуховодов, а также муфты и кабельные проходки;
- корпорация ТехноНИКОЛЬ предлагает решения на базе каменной ваты для повышения предела огнестойкости стальных и железобетонных конструкций, профлиста и трубопроводов;
- всемирно известный бренд ROCKWOOL предлагает фирменную огнезащитную систему ROCKFIRE на базе материалов из каменной ваты и специального клея. Компания предоставляет решения для защиты воздуховодов, кабельных каналов, проходок труб и кабелей через стены, огнестойкие кровельные системы, системы огнезащиты металлоконструкций, древесины и бетона;
- Эковер — отечественная компания, выпускающая огнезащитные материалы конструкционного типа на базе базальтовых плит для повышения огнестойкости металла и железобетона до REI 240;
- финская компания PAROC производит огнезащитные материалы на основе каменной ваты;
- международная группа Saint-Gobain предлагает конструкционную огнезащиту Gyprock Glasroc F на базе плит, состоящих из гипса и стеклополотна. Используется для повышения огнестойкости металлоконструкций и облицовки ограждающих элементов зданий;
- немецкая компания KNAUF реализует различные решения по огнезащите металлоконструкций и устройству противопожарных перегородок со степенью огнестойкости до R240 на базе обычных гипсовых листов, суперлистов, «аквапанелей» и плит «файерборд»;
- HILTI — предоставляет решения по огнезащите кабельных проходов, противопожарные пены и герметики;
- Walraven — производитель огнестойких крепежных систем, пен и герметиков для заделки пустот, противопожарных муфт и проходок для инженерных коммуникаций.
Литература:
[1] СП 2.13130.2012 СИСТЕМЫ ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ. ОБЕСПЕЧЕНИЕ ОГНЕСТОЙКОСТИ ОБЪЕКТОВ ЗАЩИТЫИсточник: https://maistro.ru/articles/stroitelnyj-konstrukcii/ognestojkost-stroitelnyh-konstrukcij-i-metody-ee-povysheniya
Огнестойкость бетона: воздействие высоких температур на горизонтально расположенные бетонные конструкции, колонны. Жароупорные бетоны
Среди характеристик бетона, одним из важнейших параметров является огнестойкость, которая отвечает за сопротивляемость материала открытому огню при пожаре. В данной статье мы подробней рассмотрим, что такое огнестойкость, от чего она зависит и каким может быть этот показатель у разных видов бетона.
Огнестойкий бетон
Общие сведения
В первую очередь следует сказать, что люди зачастую путают огнестойкость железобетонных конструкций с жаростойкостью, а это несколько разные понятия:
- Огнестойкость — сопротивление материала непродолжительному воздействию открытого огня при пожаре
- Жаростойкость — это способность бетонов сохранять свои свойства при длительном или даже постоянном воздействии высоких температур во время эксплуатации тепловых агрегатов.
В результате незначительной теплопроводности материала, при непродолжительном воздействии высокой температуры бетон и арматура, которая расположена под защитным слоем, не успевают достаточно разогреться.
Поэтому гораздо более губительным для бетона является его поливание водой, что происходит при тушении пожара. При этом происходит растрескивание материала, нарушение защитного слоя и, как следствие, обнажение арматуры.
Воздействие высоких температур на бетон
Под воздействием высоких температур, в бетоне происходят различные негативные процессы:
250 – 300 градусов по Цельсию | Снижается прочность, что сопровождается процессом разложения гидрата кальция окиси.При этом разрушается структура цементного камня. |
550 градусов по Цельсию | При такой температуре зерна кварца, которые имеются в песке и щебне для бетона, начинают растрескиваться и кварц переходит в другую инстанцию – тридимит. Растрескивание обусловлено увеличением кварцевых зерен в объеме. При этом в структуре пласта возникают микротрещины в местах соприкосновения цементного камня с наполнителем. |
Свыше 550 градусов по Цельсию | При последующем увеличении температуры разрушаются и прочие структурные элементы бетона. |
На фото — жаропрочный бетон
Жароупорные бетоны
Данные из таблицы относятся к обычным бетонам. Однако в результате научных и практических изысканий была открыта возможность создания жароупорного бетона на основе портландцемента, который способен выдерживать температуру в 1100 градусов и даже выше.
Для этого в состав материала вводят алюмокремнеземистые либо кремнеземистые тонкомолотые добавки, связывающие гидроокись кальция, которая выделяется в результате гидратации цемента.
Кроме того, в качестве заполнителей используют термостойкие и огнеупорные материалы, такие как:
- Кирпичный щебень;
- Доменный шлак;
- Туф;
- Шамот;
- Андезит;
- Базальт;
- Хромистый железняк.
Базальтовый щебень
Максимальная температура, которую может выдерживать такой бетон, зависит от наполнителей.
К примеру, при использовании шамота, максимальная температура составляет 1100-1200 градусов по Цельсию.
Если конструкция не будет подвергаться нагреву свыше 700 градусов, в качестве наполнителя можно применять бой глиняного кирпича либо доменный шлак.
Таким образом, приготовить жаростойкий бетон можно даже своими руками на строительной площадке.
Совет!После возведения железобетонных конструкций зачастую возникает необходимость в их механической обработке.В таком случае используют специальное оборудование с алмазными насадками.
К примеру, строителями зачастую выполняется алмазное бурение отверстий в бетоне, а также резка железобетона алмазными кругами.
Железобетонные конструкции после пожара
Огнестойкость конструкций из железобетона
Огнестойкость конструкций из железобетона зависит от многих параметров:
- Размеров сечения конструкции;
- Толщины защитного слоя;
- Диаметра и количество арматуры;
- Нагрузки на конструкцию.
С уменьшением плотности материала, а также увеличением его толщины, предел огнестойкости возрастает. Также следует отметить, что данный показатель зависит от статической схемы и вида опирания конструкции. Поэтому перед заливкой, специалисты обязательно выполняют расчет огнестойкости железобетонных конструкций.
Бетонные прогоны
Горизонтально расположенные конструкции
Свободно опертые однопролетные изгибаемые элементы при воздействии пожара разрушаются в результате разогревания нижней продольной арматуры. Поэтому их предельная температура зависит от класса арматуры, теплопроводности материала, а также толщины защитного слоя.
К таким конструкциям относятся следующие виды изделий:
- Настилы перекрытий и панели;
- Балочные плиты;
- Прогоны;
- Балки и пр.
Обратите внимание!
У прогонов и балок предел огнестойкости во многом зависит еще и от ширины сечения.
Также следует отметить, что при одинаковых параметрах, огнестойкость балок и плит разная, что связано с тем, что балки при пожаре разогреваются с трех сторон.
Тонкостенные изгибаемые конструкции могут преждевременно разрушаться под воздействием пожара по косому сечению у опор. Такие разрушения предотвращают путем установки вертикальных каркасов длиной ¼ пролета на при опорных участках.
К изгибаемым тонкостенным конструкциям относятся:
- Ребристые и пустотные панели;
- Балки и ригели;
- Настилы и пр.
Плиты перекрытия
Опертые по контуру плиты обладают гораздо большим пределом огнестойкости, чем изгибаемые элементы. Такие плиты армированы в двух направлениях, поэтому их огнестойкость зависит от соотношения длины арматуры в длинном и коротком проемах.
У квадратных плит критическая температура составляет 800 градусов по Цельсию.
С увеличением одной из сторон, критическая температура снижается, соответственно уменьшается и предел огнестойкости.
Если соотношение сторон более четырех, то огнестойкость плит такая же, как и у конструкций, которые оперты на две стороны.
Обратите внимание!С точки зрения огнестойкости наиболее прочной является арматурная сталь марки 25Г2С класса А-III.Ее критическая температура составляет 570 градусов по Цельсию.
Колонны
Колонны
Огнестойкость таких конструкций как колонны также зависит от ряда факторов:
- Нагрузки на них (центральной и внецентральной);
- Размеров поперечного сечения;
- Вида крупного заполнителя;
- Процента армирования;
- Толщины защитного слоя у продольной арматуры. Поэтому при заливке конструкции должна строго соблюдаться инструкция.
Разрушение колонн под воздействием открытого огня происходит в результате снижения прочности бетона и арматуры. Причем, внецентреннаянагрузка уменьшает их огнестойкость.
В случаях, когда нагрузка происходит с большим эксцентриситетом, огнестойкость конструкции зависит от толщины защитного слоя в области растянутой арматуры.
Другими словами — характер работы колонн при нагревании аналогичен с простыми балками.
Если же нагрузка происходит с малым эксцентриситетом, то конструкция может сопротивляться воздействию пожара, как и центрально-сжатые колонны.
Обратите внимание!
Огнестойкость колонн, выполненных из раствора на гранитном щебне, на 20 процентов меньше, чем колонн на известковом щебне.
Пример — огнестойкость газобетона
Огнестойкость ячеистых бетонов
Как уже было сказано выше, чем меньше плотность материала, тем он более устойчивый к воздействию пожара. Поэтому предел огнестойкости газобетонных блоков и других изделий из ячеистого бетона более высокий.
Согласно многочисленным исследованиям, которые были проведены шведским техническим университетом, а также и финским техническим центром, при нагревании,прочность ячеистого бетон аизменяется следующим образом:
- Повышение температуры до 400 градусов –прочность материала увеличивается до 85 процентов.
- Разогрев до 700 градусов – прочность снижается до первоначальных показателей.
- Разогрев до 1000 градусов –прочность падает на 86 процентов и этот показатель стабилизируется.
Таким образом, предел огнестойкости пенобетонных блоков составляет около 900 градусов. Для сравнения, обычный бетон при температуре около 400-700 градусов теряет основную часть своей прочности.
Пенобетонный блок
Поэтому данный материал получил широкое распространение при строительстве зданий, в которых планируется повышенный уровень пожароопасности.
Вывод
Как мы выяснили, огнестойкость и жаростойкость бетона зависят от ряда факторов, начиная от наполнителя материала и заканчивая особенностями бетонных конструкций. Поэтому данному показателю необходимо уделять внимание на всех этапах строительства.
Из видео в этой статье можно получить дополнительную информацию по данной теме.
Источник: https://masterabetona.ru/betonirovaniye/321-ognestojkost-betona