Температура горения керосина в воздухе

ГОСТ 10227-86

Содержание

Описание

Реактивное топливо керосин ТС-1 получают из среднедистиллятной фракции нефти путем прямой перегонки нефти, либо в смеси с гидроочищенным или демеркаптанизированным компонентом.

Для приведения топлива к требованиям стандарта по составу общей или меркаптановой серы применяют либо гидроочистку, либо демеркаптанизацию.

Основные эксплуатационные характеристики: хорошая испаряемость для обеспечения полноты сгорания; высокие полнота и теплота сгорания для определения дальности полета; хорошие прокачиваемость и низкотемпературные свойства для подачи в камеру сгорания; низкая склонность к образованию отложений; хорошие совместимость с материалами и противоизносные и антистатические свойства.

Применение

Керосин ТС-1 предназначен для использования в самолетах дозвуковой авиации.

Хранение

Изготовитель гарантирует соответствие качества топлива требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

Гарантийный срок хранения: 5 лет со дня изготовления.

Технические характеристики для керосин ТС 1

Наименование показателя Норма по ГОСТ (ТУ)
Плотность при 20°С, кг/м3, не менее 780
Фракционный состав:
температура начала перегонки, °С 150
10% отгоняется при температуре, °С, не выше 165
50% отгоняется при температуре, °С, не выше 195
90% отгоняется при температуре, °С, не выше 230
98% отгоняется при температуре, °С, не выше 250
Кинематическая вязкость, мм2/с (сСт):
при 20°С, не менее 1,3 (1,3)
при -40°С, не более 8 (8)
Низкая теплота сгорания, кДж/кг, не менее 43120
Высота некоптящего пламени, мм, не менее 25
Кислотность, мг КОН на 100 см3 топлива, не более 0,7
Йодное число, г йода на 100 г топлива, не более 2,5
Температура вспышки, определяемая в закрытом тигле, °С, не ниже 28
Температура начала кристаллизации, °С, не выше -50
  • Термоокислительная стабильность в статических условиях при 150°С,
  • концентрация осадка мг на 100 см3 топлива, не более
18
Массовая доля ароматических углеводородов, %, не более 22
Концентрация фактических смол, мг на 100 см3 топлива, не более 3
Массовая доля общей серы, % , не более 0,2
Массовая доля меркаптановой серы, %, не более 0,003
Массовая доля сероводорода отсутствие
Испытание на медной пластинке при 100°С, 3 ч. выдерживает
Зольность, %, не более 0,003
водорастворимых кислот и щелочей отсутствие
мыл нафтеновых кислот отсутствие
механических примесей и воды отсутствие
Взаимодействие с водой, балл, не более
а) состояние поверхности раздела 1
б) состояние разделенных фаз 1

Примечания:

1. Удельная электрическая проводимость нормируется только для топлив, содержащих антистатическую присадку Сигбол.

2. Топлива ТС-1 высшего и первого сорта, Т-2 и РТ, предназначенные для применения во всех климатических районах, за исключением района 11 (по ГОСТ 16350-80), допускается вырабатывать с температурой начала кристаллизации не выше минус 50 °С.

Допускается применять в климатическом районе 11 (ГОСТ 16350-80) топлива ТС-1 и РТ с температурой начала кристаллизации не выше минус 50 °С при температуре воздуха у земли не ниже минус 30 °С в течение 24 ч до вылета.

Топливо для применения в климатическом районе 11 с температурой начала кристаллизации не выше минус 55 °С (РТ) и минус 60 °С (ТС-1) вырабатывают по требованию потребителей.

3. Топливо Т-1С предназначено для специального потребления.

4. В топливе после длительного хранения (более 3 лет) допускается отклонение от норм, указанных в таблице:

— по кислотности — на 0,1 мг КОН на 100 см3 топлива;

— по содержанию фактических смол — на 2 мг на 100 см3 топлива;

— по количеству осадка при определении термической стабильности в статических условиях — на 2 мг на 100 см3 топлива.

5. По требованию потребителей топливо Т-1 должно выпускаться плотностью при 20 °С не менее 810 кг/м3.

6. При производстве топлива марки РТ с присадкой Хайтек-580 норма по показателю 6 устанавливается не более 0,7 мг KOH/100 см3.

Правила приемки

Топливо для реактивных двигателей принимают партиями.

Партией считают любое количество топлива, изготовленного за один непрерывный технологический процесс, однородного по своим показателям качества и компонентному составу, оформленное одним документом о качестве. В документе должно быть указано количество противоизносной, антиокислительной и антистатической присадок, введенных при изготовлении топлива.

Объем выборки — по ГОСТ 2517-85.

При получении неудовлетворительных результатов испытаний хотя бы по одному показателю проводят повторные испытания вновь отобранной пробы, взятой из той же выборки.

Результаты повторных испытаний распространяются на всю партию.

Безопасность

Топлива для реактивных двигателей представляют собой легковоспламеняющуюся жидкость, выкипающую в пределах 130–280 °С для топлив РТ, ТС-1 и Т-1 и 60-280 °С для топлива Т-2; температура самовоспламенения топлив РТ, ТС-1, Т-1, Т-1С-220 °С, топлива Т-2 – 230 °С.

Температурные пределы воспламенения паров топлив и концентрированные пределы взрываемости приведены в таблице:

Наименование показателя ТС-1, РТ Т-1, Т-1С Т-2
Температурные пределы воспламенения паров, °С:
— нижний 25 50 -10
— верхний 65 105 34
Концентрированные пределы взрываемости, %, объемные:
— нижний 1,5 1,8 1,0
— верхний 8,0 8,0 6,8

Источник: http://aaa-himia.ru/article/73.html

Состав и характеристики керосина, основные свойства разных видов

Температура горения керосина в воздухе

07.02.2018

Свойства керосина сделали его востребованным в различных сферах. Прозрачная, маслянистая жидкость подходит для применения в качестве топлива, ГСМ и всевозможных добавок. Керосин устойчив к низким температурам и имеет высокие показатели горения и испаряемости. Также он совместим с сырьем, имеющим другой состав.

Керосин, нефтепродукт, получаемый путем ректификации и вторичной переработки сырья. В некоторых случаях его дополнительно подвергают гидроочистке

Состав и свойства керосина

Керосин, состав и свойства которого подходят для создания реактивного горючего, заправки различных приборов и промывки механизмов, отличается высокой степенью прокачиваемости. Также он востребован благодаря отсутствию новообразований и отложений.

Керосин как горючее имеет широкий спектр применения, от ракет до камер для обжига и приборов освещения


Способ переработки сырья отражается на содержании различных примесей. В нем могут присутствовать кислородные, сернистые и азотные соединения. Число углеводородов указывается в процентах:

  • Непредельные – до 2.
  • Ароматические – от 5 до 25.
  • Нафтеновые – от 20 до 50.
  • Алифатические – от 20 до 60.

При различных t фракционный состав керосина меняет свой объем. Для 20°С и 25°С – 200%, для 80°С – 270%. Грамотное расщепление сложно компонентной смеси на отдельные части проводится исходя из свойств продуктов нефти.

Выписка показателей керосина в соответствии с ГОСТом 4753-68


Основные показатели физических свойства керосина

Физические свойства керосина насчитывают множество подпунктов. К базовым относят те, которые влияют на качество и сферу применения вещества.

1. Плотность керосина

Степень плотности является широко применяемой характеристикой нефтепродуктов. Для ее определения используется относительная величина. Так при 20°С, она будет достигать от 780 до 850 кг/м3. При расчетах важна температура вещества, действительная плотность продукта и дистиллированной воды.

Цвет керосина варьируется от желтоватого до светло-коричневого, так же он может быть бесцветным


2. Кинематическая вязкость керосина

Состав керосина определяет его вязкость. При этом, чем выше температура вещества, тем ниже данный показатель. Рассматриваемая характеристика отражается на:

  • Свойствах эксплуатации топливных систем.
  • Качестве образуемой смеси.
  • Процессах сгорания в двигателе.

При 20°С уровень вязкости составит 1,2 — 4,5 мм2/с.

Чтобы керосин послужил арктическим топливом, в него нужно добавлять присадки, повышающие цетановое число и снижающие износ двигателя


3. Температура вспышки керосина

Химический состав керосина отражается на температуре его вспышки. Величина показателя от 28°С до 60°С определяет уровень пожарной безопасности вещества. Все нормы регламентируются действующими ГОСТами.

4. Теплота при горении керосина

Рассматриваемая характеристика демонстрирует количество выделенного тепла при абсолютном сгорании массовой единицы сырья. Для керосина показатель составляет от 42,9 до 43,1 МДж/кг.

При какой температуре наступает помутнение керосина можно определить оптически. Для этого фиксируются изменения в способности вещества пропускать лучи света

Химические свойства керосина

Керосин – химические свойства топлива, такие как испаряемость и воспламеняемость, зависят от состава сырья и типа его переработки. Концентрация ароматических углеводородов разная, что обусловило такие группы керосина:

  • Авиационная. В свою очередь делится на реактивное (РТ) и самолетное (ТС-1) горючее. Используется для смазки топливных систем в двигателях разной авиатехники. Также играет роль хладагент. Имеет повышенную термическую окисляемость и отметку сгорания. Характеризуется стабильностью и устойчивостью к низким температурам.
  • Техническая. Все допуски регламентируются ГОСТом «Керосин для технических целей» 18499-73. Сорта КТ-1 и КТ-2 заменяют растворители или очистители для промывки узлов и запчастей автотранспорта, оборудования и механизмов.
  • Осветительная. Типы КО-25, 25 или 30 используются для заправки керосиновых ламп. Применяют некоторые типы топлива для пропитки выделанных кож. Среди преимуществ – отсутствие нагара и копоти при горении.

К важным техническим характеристикам керосина можно отнести повышенную испаряемость. паров в воздухе до 300 мг/м3 является не опасным для человека. При работе с топливом также необходимо учитывать его высокий уровень воспламеняемости – возгорание при t° 57°С, самовоспламенение при t° 216°С.

Читайте также  Крепление кабеля к тросу по воздуху

Керосин часто используют для промывки механизмов и их очистки от ржавчины


Если вам необходим керосин, характеристики различных видов узнать можно у специалистов ТК АМОКС. Оптимальный вариант будет подобран исходя из целей применения. Обратите внимание на каталог топлива, где представлены распространенные типы керосинов, солярки, бензинов и ГСМ. Звоните, мы ответим на все вопросы!

Заполните форму обратной связи, наши менеджеры свяжутся с вами!

Источник: https://www.ammoxx.ru/articles/sostav-i-harakteristiki-kerosina-osnovnye-svoystva-raznyh-vidov/

Статьи

Керосин представляет собой смесь углеводородов с атомным числом более 9 и менее 16, которые выкипают в процессе прямой перегонки нефти в температурном интервале + 100, + 320 градусов Цельсия.

Химический состав и свойства керосина

Химический состав полученного при крекинге керосина может меняться в зависимости того, производной из какой нефти он является, а также используемой технологии ее переработки и дальнейшей очистки керосинового дистиллята. В среднем этот нефтепродукт может включать:

  • алифактические углероды в процентном соотношении от 20 до 60;
  • нафтеновые углероды в процентном соотношении от 20 до 50;
  • бициклические ароматические углероды в процентном соотношении от 5 до 25;
  • непредельные углероды в процентном соотношении до 2.

При более высоких температурах процессов получения керосина количество бициклических ароматических углеродов возрастает.

В тоже время, их более низкое содержание в готовом нефтепродукте способствует повышению интенсивности и яркости пламени.

Высокое процентное содержание тяжелых фракций приводит к ухудшению горения этого нефтепродукта, поэтому после его получения производится специальная химическая и гидроочистка.

Следует учитывать также высокие показатели испаряемости данного продукта. При концентрации в воздухе превышающей 300 мг/м3 существует угроза отравления парами керосина. Это накладывает определенные требования на условия хранения данного нефтепродукта.

Основные характеристики керосина

Свойства Параметры
Вязкость (определяют при 20°С) в мм2/с От 1,2 до 4,5
Плотность (определяют при 20°С) в кг/м3 От 770 до 850
Температура вспышки в °С От +28 до +72
Теплота сгорания в МДж/кг От 42,9 до 43,2
Температура самовоспламенения в °С + 216°
Максимальная высота некоптящего пламени при давлении 101,3 кПа в мм От 14,7 до 42,8
Концентрационный предел воспламенения в процентах (%) От 1,2 до 8
Температура помутнения в °С -12
Кислотное число в мг/мл 0,7 на 100

Кинематическая вязкость углеводородов, находящихся в керосине меняется в зависимости от температуры. При низких температурах она повышается, что оказывает влияние на процесс сгорания топливной смеси в авиационных двигателях.

Плотность керосина относится к наиболее важным характеристикам. В начале развития нефтеперерабатывающей промышленности это показатель служил единственной качественной характеристикой керосина.

Показатель температуры вспышки демонстрирует пожароопасность нефтепродукта. Его величина для авиационного топлива регламентируется международными стандартами и строго контролируется. Следует учесть, что при попадании в керосин бензина его огнеопасность существенно увеличивается.

Теплота сгорания определяется количественными показателями получаемой теплоты в процессе сгорания одного килограмма нефтепродукта (для газов учитывается единица объема).

Под температурой самовоспламенения понимают способность смеси испарений керосина и воздуха к самостоятельному устойчивому горению.

В качестве такого показателя используется минимальное температурное значение, при котором происходит воспламенение без посторонних источников огня.

Это свойство нефтепродуктов используется в дизельных моторах.

Высота некоптящего пламени керосина демонстрирует возможность горения нефтепродукта без образования копоти в стандарной лампе, фитиль которой равен 0,6см. Этот показатель имеет зависимость от фракционного или химического состава, и влияет принадлежность керосина к той или иной марке топлива.

Под концентрационным пределом воспламенения (КПВ) понимают отношение объема парообразного состояния керосина и интервала его концентрации в воздухе (который служит окислительной средой) в пределах которого возможно возгорание от внешнего источника с дальнейшим самостоятельным распространением пламени по смеси.

Температурным показателем помутнения нефтепродукта определяется начало процесса образования в керосине кристаллов углеродов.

Этот показатель влияет на свойства горения керосина при низких температурах. Образующиеся кристаллы снижают силу горения.

Для определения температуры помутнения используются оптические методы.

Поскольку керосин содержит различные соединения органических кислот, которые также снижают его качество, этот продукт подвергают щелочному очищению.

Показатели кислотности керосина строго лимитируется и указывается в соотношении количества КОН в мг необходимых для нейтрализации свободных кислот в 100 мл керосина.

Чтобы предотвратить обратное растворение нафтеновых кислот вторичная очистка керосина выполняется при 40°С.

рассчитать доставку керосина ЗДЕСЬ…

Источник: https://www.mos-nt.ru/info/articles/kerosin?ELEMENT_ID=4574

Температура открытого огня: температурный режим огня в зажигалке, влияющие факторы и классификация

Пламя — это явление, которое вызвано свечением газообразной раскалённой среды.

В некоторых случаях оно содержит твёрдые диспергированные вещества и (или) плазму, в которых происходят превращения реагентов физико-химического характера. Именно они и приводят к саморазогреву, тепловыделению и свечению.

В газообразной среде пламени содержатся заряженные частицы — радикалы и ионы. Это объясняет существование электропроводности пламени и его взаимодействие с электромагнитными полями.

На таком принципе построены приборы, которые могут приглушить огонь, изменить его форму или оторвать его от горючих материалов при помощи электромагнитного излучения.

Свечение огня делится на два вида:

  • несветящиеся;
  • светящиеся.

Почти каждое свечение видимо для человеческого глаза, но не каждое способно испускать нужное количество светового потока.

Свечение пламени обуславливается следующими факторами.

  1. Температурой.
  2. Плотностью и давлением газов, которые участвуют в реакции.
  3. Наличием твёрдого вещества.

Наиболее общая причина свечения — это присутствие в пламени твёрдого вещества.

Многие газы горят слабо светящимся или несветящимся пламенем.

Из них наиболее распространены сероводород (пламя голубого цвета как при горении), аммиак (бледно-жёлтое), метан, окись углерода (пламя бледно-голубого цвета), водород.

Пары летучих некоторых жидкостей горят едва светящимся пламенем (спирт и сероуглерод), а пламя ацетона и эфира становится немного коптящим из-за небольшого выделения углерода.

Температура пламени

Для разных горючих паров и газов температура пламени неодинакова. А ещё неодинакова температура разных частей пламени, а область полного сгорания имеет более высокие показатели температуры.

Некоторое количество горючего вещества при сжигании выделяет определённое количество теплоты. Если строение вещества известно, то можно рассчитать объём и состав полученных продуктов горения. А если знать удельную теплоту этих веществ, то можно рассчитать ту максимальную температуру, которую достигнет пламя.

Стоит помнить о том, что если вещество горит в воздухе, то на каждый объём вступающего в реакцию кислорода приходится четыре объёма инертного азота.

А так как в пламени присутствует азот, он нагревается теплотой, которая выделяется при реакции.

Исходя из этого можно сделать вывод о том, что температура пламени будет состоять из температуры продуктов горения и азота.

Невозможно точно определить температуру, но можно это сделать приблизительно, так как удельная теплота изменяется с температурой.

Вот некоторые показатели по температуре открытого огня в разных материалах.

  1. Горение магния — 2200 градусов.
  2. Горение спирта не превышает температуры 900 градусов.
  3. Горение бензина — 1300−1400 градусов.
  4. Керосина — 800, а в среде чистого кислорода — 2000 градусов.
  5. Горение пропан-бутана может достигать температуры от 800 до 1970 градусов.
  6. При сгорании дерева температурный показатель колеблется от 800 до 1000 градусов, а воспламеняется оно при 300 градусах.
  7. Температурный параметр горения спички составляет 750−850 градусов.
  8. В горящей сигарете — от 700 до 800 градусов.
  9. Большинство твёрдых материалов воспламеняется при температурном показателе в 300 градусов.

Пламя, которое каждый человек может наблюдать при горении свечи, спички или зажигалки, представляет из себя поток раскалённых газов, которые вытягиваются вертикально вверх, благодаря силе Архимеда.

Фитиль свечи вначале нагревается и начинает испаряться парафин. Для самой нижней части характерно небольшое свечение синего цвета — там мало кислорода и много топлива.

Именно из-за этого топливо не полностью сгорает и образуется оксид углерода, который при окислении на самом крае конуса пламени ему придаёт синий цвет.

За счёт диффузии в центр поступает немного больше кислорода. Там происходит последующее окисление топлива и температурный показатель растёт. Но для полного сгорания топлива этого недостаточно.

Внизу и в центре содержатся частицы угля и несгоревшие капельки. Они светятся из-за сильного нагревания.

А вот испарившееся топливо, а также продукты сгорания, вода и углекислый газ практически не светятся. В самом верху наибольшая концентрация кислорода. Там не догоревшие частицы, которые в центре светились, догорают.

Именно по этой причине эта зона практически не светится, хотя там наиболее высокий температурный показатель.

Классификация пламени

Классифицируют свечение огня следующим образом.

  1. По восприятию визуальному: цветные, прозрачные, коптящие.
  2. По высоте: короткие и длинные.
  3. По скорости распространения: быстрые и медленные.
  4. По температурному показателю: высокотемпературные, низкотемпературные, холодные.
  5. По характеру перемещения среды реакционной: пульсирующие, турбулентные, ламинарные.
  6. По состоянию горючей среды: предварительно перемешанные и диффузионные.
  7. По излучению: бесцветные, окрашенные, светящиеся.
  8. По агрегатному состоянию горючих веществ: пламя аэродисперсных и твёрдых реагентов, жидких и газообразных.

В диффузном ламинарном пламени выделяют три оболочки (зоны). Внутри конуса пламени существует:

  • зона тёмная, где нет горения из-за малого количества окислителя — 300−350 градусов;
  • зона светящаяся, где осуществляется термическое разложение горючего и оно сгорает частично — 500−800 градусов;
  • зона слегка светящаяся, где окончательно сгорают продукты разложения горючего и достигается максимальный температурный показатель в 900−1500 градусов.

Температурный параметр пламени зависит от интенсивности подвода окислителя и природы горючего вещества. Пламя распространяется по предварительно перемешанной среде. Происходит распространение по нормали от каждой точки фронта к поверхности пламени.

По реально существующим смесям газовоздушным распространение всегда осложнено возмущающими внешними воздействиями, которые обусловлены трением, конвективными потоками, силами тяжести и прочими факторами.

Именно из-за этого реальная скорость распространения от нормальной всегда отличается. В зависимости от того, какой характер носит скорость распространения, различают такие диапазоны:

  1. При горении детонационном — более 1000 метров в секунду.
  2. При взрывном — 300−1000.
  3. При дефлаграционном — до 100.

Оно располагается в самой верхней части огня, которая имеет наибольший температурный показатель.

Читайте также  Совместное хранение химических веществ

В этой зоне горючие вещества почти полностью превращены в продукты горения. Здесь наблюдается недостаток топлива и избыток кислорода.

Именно по этой причине вещества, которые помещены в эту зону, окисляются интенсивно.

Пламя восстановительное

Эта часть наиболее близка к центру или находится чуть ниже его. Здесь мало кислорода для горения и много топлива. Если в эту область внести вещество, в котором имеется кислород, то он отнимется у вещества.

Температура огня в зажигалке

Зажигалка — это устройство портативное, которое предназначено для получения огня. Она может быть бензиново или газовой, в зависимости от применяемого топлива.

Ещё существуют зажигалки, в которых собственного топлива нет. Они предназначаются для поджига газовой плиты. Качественная турбозажигалка — это прибор относительно сложный.

Температура огня в ней может достигать 1300 градусов.

Химический состав и цвет пламени

У карманных зажигалок небольшой размер, это позволяет их переносить без каких-либо проблем. Довольно редко можно встретить настольную зажигалку.

Ведь они из-за своих больших размеров для переноски не предназначены. Их дизайн разнообразен. Есть зажигалки каминные.

Они имеют небольшую толщину и ширину, но довольно длинные.

На сегодняшний день становятся популярными рекламные зажигалки. Если в доме нет электроэнергии, то невозможно ей поджечь газовую плиту. Газ поджигает образующаяся электрическая дуга. Достоинствами этих зажигалок являются следующие качества.

  1. Долговечность и простота конструкции.
  2. Быстрое и надёжное зажигание газа.

Первая зажигалка с современным кремнём создана в Австрии в 1903 году после изобретения ферроцериевого сплава бароном Карлом Ауэром фон Вельсбахом.

Ускорилось развитие зажигалок в период Первой мировой войны. Солдаты начали применять спички для того, чтобы видеть в темноте дорогу, но их местоположение выдавала интенсивная вспышка при поджиге. Необходимость в огне без значительной вспышки способствовало развитию зажигалок.

В то время лидерами производства зажигалок «кремнёвых» были Германия и Австрия. Такое портативное устройство, которое предназначено для получения огня, находящиеся в кармане многих курильщиков, при неправильном обращении может таить в себе немало опасностей.

Зажигалка в период работы не должна вокруг себя разбрызгивать искры. Огонь должен быть стабильным и ровным. Температура огня в зажигалках карманных достигает примерно 800−1000 градусов. Свечение красного или оранжевого цвета вызвано частицами углерода, которые раскалились.

Для бытовых горелок и турбозажигалок применяется в основном газ бутан, который легко сжигается, не имеет запаха и цвета. Бутан получают путём переработки при высоких температурах нефти, а также её фракций.

Бутан — это легковоспламенимые углеводороды, но он абсолютно безопасен в конструкциях современных зажигалок.

Подобные зажигалки в быту очень полезны. Ими можно поджечь любой воспламеняющийся материал. В комплект турбозажигалок входит настольная подставка.

Цвет пламени зависит от горючего материала и температуры горения. Пламя костра или камина в основном имеет пёстрый вид. Температура горения дерева ниже температуры горения фитиля свечи.

Именно из-за этого цвет костра не жёлтый, а оранжевый.

Медь, натрий и кальций при высоких температурных показателях светятся различными цветами.

Электрическая зажигалка была изобретена в 1770 году. В ней водородная струя воспламенялась от искры машины электрофорной. Со временем бензиновые зажигалки уступили место газовым, которые более удобные. В них обязательно должна находиться батарейка — источник энергии.

Не очень давно появились зажигалки сенсорные, в которых без механического воздействия происходит зажигание газа воздействием на сенсорный датчик. Сенсорные зажигалки карманного типа. В основном, в них содержится информация рекламного типа, которая нанесена при помощи тампонной или шелкотрафаретной печати.

Источник: https://tokar.guru/metally/temperatura-plavleniya/temperatura-otkrytogo-plameni-i-ognya-v-zazhigalke.html

О температуре горения и теплотворности дров

Дрова – классический вариант твердого топлива в местности, богатой лесами.

Сжигание древесины дает возможность получать тепловую энергию, при этом температура горения дров напрямую влияет на эффективность использования топлива.

Температура пламени зависит от породы дерева, а также от степени влажности топлива и условий его сжигания.

Горящие дрова в печке

Тепловые характеристики древесины

Породы древесины различаются по плотности, структуре, количеству и составу смол. Все эти факторы влияют на теплотворность дров, на температуру, при которой они сгорают, и на характеристики пламени.

Древесина тополя пористая, такие дрова горят ярко, но максимальный температурный показатель достигает лишь 500 градусов.

Плотные породы дерева (бук, ясень, граб), сгорая, выделяют свыше 1000 градусов тепла. Показатели березы несколько ниже – около 800 градусов.

Лиственница и дуб разгораются жарче, выдавая до 900 градусов тепла. Сосновые и еловые дрова горят при 620-630 градусах.

Качество дров и как правильно выбирать

У берёзовых дров лучшее соотношение теплоэффективности и стоимости – топить более дорогими породами с высокими показателями температуры сгорания экономически невыгодно.

Ель, пихта и сосна пригодны для разведения костров – эти хвойные породы обеспечивают относительно умеренное тепло.

Но в твердотопливном котле, в печи или камине такие дрова использовать не рекомендуется – они выделяют недостаточно тепла для эффективного обогрева жилища и приготовления пищи, сгорают с образованием большого количества сажи.

Низкокачественными дровами считается топливо из осины, липы, тополя, ивы и ольхи – пористая древесина при горении выделяет мало тепла. Ольха и некоторые другие виды древесины «стреляют» угольками в процессе горения, что может привести к возникновению пожара, если дрова использовать для топки открытого камина.

При выборе также следует обратить внимание на степень влажности древесины – сырые дрова хуже горят и оставляют больше золы.

Температура горения и теплоотдача

Температура горения древесины определяет показатели теплоотдачи топлива – чем она выше, тем большее количество тепловой энергии выделяется в процессе сгорания дров. При этом удельная теплотворность топлива зависит от характеристик древесины.

Показатели теплоотдачи в таблице указываются для дров, сжигаемых в идеальных условиях:

  • минимальное содержание влаги в топливе;
  • горение проходит в закрытом объеме;
  • подача кислорода дозирована – поступает то количество, которое необходимо для полноценного сжигания.

Ориентироваться на табличные значения теплотворности имеет смысл только для сравнения различных видов дров между собой – в реальных условиях теплоотдача топлива будет заметно ниже.

Что такое горение

Горение является изотермическим явлением – то есть, реакцией с выделением тепла.

Процесс горения дров можно разделить на несколько этапов:

1. Разогрев. Участок древесины необходимо нагреть внешним источником огня до температуры воспламенения. При нагреве до 120-150 градусов дерево начинает обугливаться, при этом образуется уголь, способный к самовоспламенению.

При нагреве до 250-350 градусов стартует процесс термического разложения на газообразные составляющие (пиролиз).

Верхний, обуглившийся слой тлеет (горит без образования пламени), при этом выделяется дым белого или бурого цвета – смесь водяного пара с продуктами пиролиза.

2. Возгорание пиролизных газов. Дальнейший разогрев приводит к усилению термического разложения, и сконцентрировавшиеся пиролизные газы вспыхивают. После вспышки возгорание постепенно начинает охватывать всю зону разогрева. При этом образуется устойчивое пламя светло-желтого цвета.

3. Воспламенение. Дальнейший разогрев приводит к воспламенению дров.

Температура воспламенения в естественных условиях колеблется в промежутке от 450 до 620 градусов.

Древесина воспламеняется под влиянием внешнего источника тепловой энергии, который обеспечивает нагрев, необходимый для резкого ускорения термохимической реакции.

Воспламеняемость древесного топлива зависит от целого ряда факторов:

  • объемный вес, форма и сечение элемента из дерева ;
  • степень влажности древесины;
  • сила тяги;
  • расположение поджигаемого объекта относительно воздушного потока (вертикальное или горизонтальное);
  • плотность древесины (пористые материалы воспламеняются легче и быстрее плотных, к примеру, разжечь ольховые дрова проще, чем дубовые).

Обратите внимание! Влажная древесина хуже разжигается и горит по причине того, что значительная часть тепловой энергии уходит на испарение излишков влаги. Дрова круглой формы разгораются хуже элементов, имеющих ребра и грани. Чем массивнее дрова, тем сложнее их разжечь. Не струганная древесина воспламенится быстрее гладкой.

Для воспламенения требуется хорошая, но не избыточная тяга – необходим достаточный приток кислорода и минимальное рассеивание тепловой энергии горения – она нужна для прогрева соседних участков древесины.

4. Горение. При условиях, близких к оптимальным, первоначальная вспышка пиролизных газов не затухает, от возгорания процесс переходит в устойчивое горение с постепенным охватом всего объема топлива. Горение делится на две фазы – тление и пламенное горение.

Тление подразумевает сгорание угля – твердого продукта процесса пиролиза. Выделение горючих газов происходит медленно и они не воспламеняются по причине недостаточной концентрации.

Газообразные вещества, охлаждаясь, конденсируются, образуя характерный белый дым. В процессе тления воздух проникает вглубь древесины, за счет чего расширяется площадь охвата.

Пламенное горение обеспечивается за счет сгорания пиролизных газов, при этом горячие газы движутся наружу.

Горение поддерживается, пока имеются условия для огня – наличие несгоревшего топлива, поступление кислорода, сохранение требуемого уровня температуры.

5. Затухание. При несоблюдении одного из условий процесс горения прекращается и пламя гаснет.

Измерение температуры горения дров

Чтобы узнать, какова температура горения дров, используют специальный прибор под названием пирометр. Другие виды термометров непригодны для этой цели.

Встречаются рекомендации определять температуру сгорания древесного топлива по цвету пламени.

Темно-красные языки огня указывают на низкотемпературное горение, белое пламя – на высокую температуру из-за усиленной тяги, при которой основная часть тепловой энергии уходит в дымоход. Оптимальный цвет пламени – желтый, именно так горит сухая береза.

У твердотопливных котлов и печей, а также у закрытых каминов, предусмотрена возможность корректировать поступление воздуха в топку, регулируя интенсивность процесса горения и теплоотдачу.

Самые жаропроизводительные дрова

Показатель теплотворности обозначает, сколько тепловой энергии выделяется в процессе сжигания дров.

Но у твердого топлива есть и другая характеристика, знание которой может пригодиться на практике – жаропроизводительность.

Это максимальный уровень температуры, который может достигаться в процессе сжигания дров, и зависит от свойств древесины.

Древесина с низкой плотностью горит светлым высоким пламенем и при этом выделяет относительно небольшое количество тепла, для дров из плотных пород дерева характерна повышенная жаропроизводительность при небольшом пламени.

ПородаЖаропроизводительность, % (100% — максимум)Температура, °C
Бук, ясень 87 1044
Граб 85 1020
Зимний дуб 75 900
Лиственница 72 865
Летний дуб 70 840
Береза 68 816
Пихта 63 756
Акация 59 708
Липа 55 660
Сосна 52 624
Осина 51 612
Ольха 46 552
Тополь 39 468
Читайте также  Содержание путей эвакуации и эвакуационных выходов

Факторы, влияющие на температуру горения

Температура горения дров в печи зависит не только от породы древесины. Значимыми факторами также являются влажность дров и сила тяги, которая обусловлена конструкцией теплового агрегата.

Влияние влажности

У свежесрубленной древесины показатель влажности достигает от 45 до 65%, в среднем – около 55%. Температура горения таких дров не поднимется до максимальных значений, так как тепловая энергия будет уходить на испарение влаги. В соответствии с этим снижается теплоотдача топлива.

Чтобы при сгорании древесины выделялось необходимое количество теплоты, используются три пути:

  • для обогрева помещений и приготовления пищи используется почти вдвое больше свежесрубленных дров (это оборачивается ростом расходов на топливо и потребностью в частом обслуживании дымовой трубы и газоходов, в которых будет оседать большое количество сажи);
  • свежесрубленные дрова предварительно высушиваются (бревна пилятся, раскалываются на поленья, которые укладывают в штабель под навес – для естественной сушки до 20% влажности требуется 1-1,5 года);
  • закупаются сухие дрова (финансовые затраты компенсируются высокой теплоотдачей топлива).

Обратите внимание: свежесрубленная древесина тополя и других пористых пород, содержащих большое количество влаги, непригодна к использованию в качестве топлива. Она плохо горит и выделяет мало тепловой энергии.

Теплотворная способность березовых дров из свежесрубленной древесины достаточно высока. Также пригодно к использованию топливо из свежесрубленного ясеня, граба и других твердых пород древесины.

Порода древесиныСоснаБерёзаЕльОсинаОльхаЯсень
Теплотворная способность свежесрубленного дерева (влажность около 50%), кВт м3 1900 2371 1667 1835 1972 2550
Теплотворная способность полусухих дров (влажность 30%), кВт м3 2071 2579 1817 1995 2148 2774
Теплотворная способность древесины, пролежавшей под навесом не менее 1 года (влажность 20%), кВт м3 2166 2716 1902 2117 2244 2907

Влияние подачи воздуха

Ограничивая поступление кислорода в топку, мы снижаем температуру горения древесины и уменьшаем теплоотдачу топлива.

Длительность сгорания закладки топлива можно увеличить, прикрывая заслонку котельного агрегата или печки, но экономия топлива оборачивается низким КПД сжигания из-за неоптимальных условий.

К дровам, горящим в камине открытого типа, воздух поступает свободно из помещения, и интенсивность тяги зависит в основном от характеристик дымохода.

Упрощенная формула идеального сгорания древесины такова:

С + 2Н2 + 2О2 = СО2 + 2Н2О + Q (теплота)

Углерод и водород сжигаются при подаче кислорода (левая часть уравнения), в результате образуется тепло, вода и углекислый газ (правая часть уравнения).

Чтобы сухие дрова горели при максимальной температуре, объем воздуха, который поступает в камеру сгорания, должен достигать 130% от объема, требуемого для процесса горения.

При перекрывании потока воздуха заслонками образуется большое количество угарного газа, и причиной тому недостаток кислорода.

Угарный газ (недожженный углерод) уходит в дымоходную трубу, при этом падает температура в камере сгорания и уменьшается теплоотдача дров.

Экономный подход при использовании твердотопливного котла на дровах – установка теплоаккумулятора, который будет запасать излишки тепла, образующегося при горении топлива в оптимальном режиме, с хорошей тягой.

С дровяными печами так экономить топливо не получится, поскольку они напрямую греют воздух. Тело массивной кирпичной печи способно аккумулировать относительно небольшую часть тепловой энергии, а у металлических печек излишки тепла напрямую уходят в дымоход.

Если вы открыли поддувало и увеличили тягу в печи, интенсивность горения и теплоотдача топлива увеличится, но и потери тепла также возрастут. При медленном сгорании дров возрастает количество угарного газа и уменьшается теплоотдача.

Важно! На эффективность сжигания топлива также влияет КПД самого теплогенератора. Для котельного агрегата он составляет около 80%, для печки – от 40%, в зависимости от конструкции и материала исполнения.

Заключение

Удельная теплота сгорания сухих березовых дров и ценовая доступность делает это топливо оптимальным выбором. Более жаропроизводительные породы древесины редко используются в качестве дров из-за высокой стоимости.

Источник: https://ProfiTeplo.com/toplivo/35-temperatura-goreniya-drov.html

Определение удельной теплоты сгорания керосина, сравнение с нефтью

Сегодня люди крайне зависимы от топлива. Без него не обходится обогрев жилищ, приготовление пищи, работа оборудования и транспортных средств. Большинство видов используемого топлива — углеводороды.

Для оценки их эффективности используют значения удельной теплоты сгорания. Керосин обладает сравнительно внушительным показателем. Благодаря этому качеству он используется в двигателях ракет и самолётов.

Благодаря своим свойствам, керосин используется в двигателях ракет

Свойства, получение и применение

История керосина насчитывает более 2 тыс. лет и начинается с тех пор, когда арабские учёные придумали метод перегонки нефти на отдельные компоненты.

Официально он был открыт в 1853 году, когда канадский врач Абрахам Геснер разработал и запатентовал метод извлечения прозрачной горючей жидкости из битумов и горючих сланцев.

После бурения первой нефтяной скважины в 1859 году нефть стала основным сырьём для керосина. Из-за повсеместного использования в лампах он десятилетиями считался главным продуктом нефтеперегонки.

Лишь появление электричества снизило его значение для освещения. Производство керосина упало также с ростом популярности автомобилей — это обстоятельство существенно повысило важность бензина как нефтепродукта.

Тем не менее и сегодня во многих частях мира керосин применяется для отопления и освещения, а современное реактивное топливо — это тот же продукт, но более высокого качества.

С повышением количества использования автомобилей – упала популярность керосина

Керосин — лёгкая прозрачная жидкость, химически представляющая собой смесь органических соединений.

Его состав во многом зависит от сырья, но, как правило, состоит из десятка различных углеводородов, молекула каждого из которых содержит от 10 до 16 атомов углерода. Керосин менее летуч, чем бензин.

Сравнительная температура возгорания керосина и бензина, при которой они выделяют воспламеняющиеся пары возле поверхности, составляет 38 и -40°C, соответственно.

Это свойство позволяет рассматривать керосин как относительно безопасное топливо с точки зрения хранения, использования и транспортировки. На основании температуры кипения (от 150 до 350°C) он классифицируется как один из так называемых средних дистиллятов сырой нефти.

Керосин может быть получен прямогонным способом, то есть физически отделён от нефти, путём дистилляции или с помощью химического разложения более тяжёлых фракций в результате крекинг процесса.

В этом видео вы узнаете, как рассчитать удельную теплоту сгорания керосина:

Характеристика керосина как топлива

Горением называют процесс бурного окисления веществ с выделением тепла. Как правило, в реакции участвует кислород, содержащийся в воздухе. Во время сжигания углеводородов образуются такие основные продукты горения:

  • углекислый газ;
  • водяной пар;
  • сажа.

Количество энергии, генерируемое во время сгорания топлива, зависит от его вида, условий сжигания, массы или объёма. Энергия измеряется в джоулях или калориях. Удельной (на единицу измерения количества вещества) теплотой сгорания называют энергию, полученную при сжигании единицы топлива:

  • молярная (например, Дж/моль);
  • массовая (например, Дж/кг);
  • объёмная (например, ккал/л).

В большинстве случаев для оценки газообразных, жидких и твёрдых топлив оперируют показателем массовой теплоты сгорания, выраженной в Дж/кг.

Во время сжигания углевода образуется несколько элементов, например, сажа

Значение теплоты сгорания будет зависеть от того, брались ли в учёт процессы, происходящие с водой во время сгорания. Испарение влаги — энергоёмкий процесс, а учёт теплоотдачи при конденсации этих паров также способен повлиять на результат.

Результат замеров, производимых до того, как сконденсированный пар вернёт энергию в систему, называют низшей теплотой сгорания, а показатель, полученный после конденсации паров, называется высшей теплотой. Углеводородные двигатели не могут использовать дополнительную энергию водяного пара в выхлопе, поэтому показатель нетто актуален для производителей моторов и встречается в справочниках чаще.

Нередко при указании теплотворной способности не уточняют о том, какая из величин имеется в виду, что может привести к путанице. Сориентироваться помогает знание того, что в РФ традиционно принято указывать низшую.

Низшая теплота сгорания – важный показатель

Следует отметить, что для некоторых видов топлива разделение на энергию нетто и брутто не имеет смысла, так как они не образуют воду во время горения.

В отношении керосина это неактуально, поскольку содержание углеводородов в нём велико.

При сравнительно невысокой плотности (между 780 кг/м³ и 810 кг/м³) его теплотворная способность аналогична этому же показателю у дизельного топлива и составляет:

  • низшая — 43,1 МДж/кг;
  • высшая — 46,2 МДж/кг.

Сравнение с другими видами горючего

Рассматриваемый показатель очень удобен для оценки потенциального количества тепла, содержащегося в топливе.

Например, теплота сгорания бензина на единицу массы сопоставима с таким же показателем у керосина, но первый значительно плотнее.

Как следствие, в таком же сравнении литр бензина содержит меньше энергии.

Удельная теплота сгорания нефти как смеси углеводородов зависит от её плотности, которая непостоянна для различных месторождений (43-46 МДж/кг). Расчётные методы позволяют с высокой точностью определить это значение, если есть исходные данные о её составе.

Усреднённо показатели для некоторых видов горючих жидкостей, входящих в состав нефти, выглядят так (в МДж/кг):

  • дизельное топливо — 42-44;
  • бензин — 43-45;
  • керосин — 43-44.

Калорийность твёрдых видов горючего, таких как торф и уголь, имеет больший разбег. Это связано с тем, что их состав может сильно отличаться как по содержанию несгораемых веществ, так и по калорийности углеводородов.

Например, теплотворная способность торфа различных типов может колебаться в пределах 8-24 МДж/кг, а каменного угля — 13-36 МДж/кг. Среди распространённых газов большой теплотворностью отличается водород — 120 МДж/кг.

Следующий по удельной теплоте сгорания — метан (50 МДж/кг).

Можно сказать, что керосин — топливо, выдержавшее испытание временем именно благодаря сравнительно высокой энергоёмкости при низкой цене. Его применение не только экономически оправдано, но и в некоторых случаях безальтернативно.

Источник: https://kaminguru.com/kotel/opredelenie-teploty-sgoranija-kerosina.html

Понравилась статья? Поделить с друзьями: